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Outline 

‣ The wonders of diamond 
‣ The pros and cons of diamond vs. silicon 

 

‣ Introduction to diamond radiation detectors 
‣ Basic principles of operation, different types of diamond 

 

‣ Measuring the quality of your diamond 
‣ Different types of synthetic diamond and how they differ 

 

‣ Building an amplifier to get the most out of your diamond 
‣ Spectroscopy at very high count rates 

 

‣ Future work here at BNL 
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Amazing, paradoxical diamond 

‣ Diamond is amazing! 

‣ Hardest material in the world 

‣ Grinding & cutting, anvil cells for extreme pressures 

‣ Also means radiation hardness for detectors → beam monitors, tracking etc 

 

‣ Best thermal conductor in the world, also great thermal tolerance 

‣ No need for heat spreaders, can operate hot 

‣ Amazing insulating properties > 1GV/m before breakdown! 

‣ Can operate at very high fields 

‣ Very high charge carrier mobilities and saturation velocities 

‣ Doesn’t conduct, but when it does, it really does! 

 

‣ Almost transparent to X-Rays so good for synchrotron windows 

‣ Not to mention myriad other synchrotron applications – just ask John Smedley 

 

‣ Too many others to list but includes… 
‣ Tissue equivalence for dosimetry, NEA for electron amplification, solar blind pixel detectors, fast 

operation for spectroscopy, high-temp for drilling, quantum information with nitrogen vacancies, high 

frequency FETs, high voltage switching, etc… 

Properties rarely 

seen together! 

 

Properties almost 

mutually exclusive! 
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‣ Semiconductors can be used to detect radiation 

‣ Measured signal is a charge pulse from the movement of excited charge carriers 

 

 

‣ Factors that limit performance 

‣ Noise - Thermally activated (intrinsic) 

   charge carriers 

‣ Noise - Capacitance of the detector 

‣ Pulse shape due to the semiconducting medium 

 

‣ For traditional silicon detectors 

‣ Many free charge carriers at room temperature → need P-N junctions to deplete 

‣ Non-trivial fabrication (and utilisation) 

‣ (Relatively) slow charge collection 

‣ (Relatively) high capacitance (for a given geometry) 

Semiconductor Radiation Detection 101 



Instrumentation Seminar, BNL 2014                                                    mfisherlevine@bnl.gov .  5 

‣ Semiconductors can be used to detect radiation 

‣ Measured signal is a charge pulse from the movement of excited charge carriers 

 

 

‣ Factors that limit performance 

‣ Noise - Thermally activated (intrinsic) 

   charge carriers 

‣ Noise - Capacitance of the detector 

‣ Pulse shape due to the semiconducting medium 

 

‣ For diamond detectors 

‣ ~ No free charge carriers at room temperature 

‣ Trivial fabrication and utilisation (just metalise and plug it in!) 

‣ Fast charge collection → high count rates possible 

‣ Low capacitance → fast, low noise electronics 

Semiconductor Radiation Detection 101 



Instrumentation Seminar, BNL 2014                                                    mfisherlevine@bnl.gov .  6 

Diamond as a semiconductor 

‣ Many interesting properties make it an excellent detector medium 

‣ ~ No free charge carriers at room temperature 

‣ Large band gap → Very few thermally generated charge carriers 

  → Extremely low leakage current 

       → Low noise detectors  

 

‣ Low dielectric constant 

‣ Low capacitance → Low noise detectors 

 

‣ Very fast signals 

‣ Ability to perform high count-rate spectroscopy 

 

‣ Insensitive to visible light 

‣ No need for light shielding 

 

‣ Extremely radiation hard 

 

Property Diamond Silicon 

Eg (eV) 5.5 1.12 

µe (cm2 V s-1) 1800 1500 

µh (cm2 V s-1) 1200 450 

e/h energy (eV) 13 3.6 

Displacement (eV) 43 13-20 

Density (g cm-3) 3.52 2.33 

Rad length X0 (cm) 12.2 9.4 

Dielectric constant 5.7 11.9 

Max E-Field (V/um) 1000 30 

Resistivity (Ω/cm) >1015 105 - 106 
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Semiconductor Radiation Detection 101 

‣ Radiation leaves ionisation trial in 

the diamond 

‣ Electrons excited from valence band 

into conduction band 

‣ Free charge carriers are generated 

‣ Drift → signal 

 

‣ Applied electric field moves the 

generated charges towards 

electrodes on the diamond’s surface 

‣ But… trapping! 

‣ Charge pulse is detected by a charge 

sensitive amplifier then shaped 
 

‣ Readout electronics register digitise 

the output voltage pulse 

‣ Pulse height and timing information is 

extracted 
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Fabrication of Diamond 

‣ Can’t dig them out of the ground  

‣ “Every diamond is unique” 

‣ Unique means great for jewellery, but 

bad for science! 

 

‣ It’s not easy, but diamond can be 

synthesised 

‣ Two methods exist, HPHT and CVD 

 

‣ HPHT is no good for making 

detectors of reasonable size 

 

‣ CVD is the way… 
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CVD Diamond growth 

 

 

 

 

 

 

 

 

 

 

 

‣ Industrial secrecy, minimal competition 

‣ High cost and poor availability 

‣ No ability to control growth parameters 

‣ CVD Diamond growth is non-trivial 

‣ Competing processes – hard to optimise 

‣ Optimisation proceeds via “black magic” 



Instrumentation Seminar, BNL 2014                                                    mfisherlevine@bnl.gov .  10 

Polycrystalline CVD Diamond 

‣ Heteroepitaxial growth 

‣ Diamond on silicon 

‣ Only partial charge collection 

‣ → Smaller signal  

‣ → Worse signal to noise ratio 

‣ Signal increases with irradiation 
 

‣ Maximum detector area 

‣ ~ size of a DVD! 

‣ (in theory) 

‣ Slightly less expensive… 

‣ But still not cheap! 

Types of CVD Diamond 

Single Crystal CVD Diamond 

‣ Homoepitaxial growth 

‣ Diamond on diamond 

‣ Full charge collection 

‣ → Large signal 

‣ → Best signal to noise ratio 

‣ Signal amplitude constant in time 
 

‣ Maximum detector area 

‣ ~ size of a penny 

 

‣ Extremely expensive!  

 



Instrumentation Seminar, BNL 2014                                                    mfisherlevine@bnl.gov .  11 

Polycrystalline CVD Diamond 

‣ Quality: related to grain size 

‣ → increases with thickness of wafer 

‣ Limiting factor = growth duration 

 

 

 

 

 

‣ Size: can be grown almost arbitrarily 

large 

‣ Limiting factor is size of CVD reactor 

Detector size and quality 

Single Crystal CVD Diamond 

‣ Quality: ~ 100% 

‣ No dependence on thickness  

  

 

 

 

 

 

‣ Size: cannot be grown much larger 

than a penny 

‣ Limiting factor is the size of the largest 

available seed crystal 

‣ It (currently) has to be a diamond! 
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Grain Structure in Polycrystalline Diamond 

• Small grains 

• → Bad performance 

• Big grains 

• → Good performance 

 

 

• Approximately linear 

increase in grains size with 

crystal thickness 

 

 

• Grow thick and throw 

away the bad stuff! 
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Detector thinning 
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Diamond Characterisation 
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‣ Landau Distribution 

 

 

 

 

 

‣ Peak Energy loss 

Energy Distribution 
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Charge Collection Distance 

‣ Plugging in numbers for: 

‣ Parameters of diamond as a material 

‣ Detector thickness of 500 μm 

‣ Relativistic properties of a 90Sr β particle 
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• How much charge can be collected?  

• How much voltage is needed for full collection? 

• How much voltage can you apply before it shorts? 

• Was your metallisation successful? 

 

  

• How does signal vary with irradiation? (pumping) 

• Does the applied electric field affect the pumping? 

• Which are the good areas on your wafer? 

 

How good is your diamond / detector? 

Single crystal diamond 

 

 

 

 
 

 

Polycrystalline diamond 
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System components 

‣ HV sources (± 500V, +/- 5000V) 

‣ GPIB controlled 

‣ XY Stage 

‣ Ethernet controlled with routines written to allow 

programming of set movement patterns 

‣ Desktop digitiser (CAEN DT5720) 

‣ Data acquired through customised control 

software 

‣ Automated resets performed via relays 

‣ Photomultiplier for triggering 

‣ Halogen light bulb for de-pumping 

‣ Automated with relays 

‣ Roving probe head for contacting wafer 

‣ Actuated via computer controlled solenoids 

‣ Post processing performed on DAQ PC 
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Measurement System 
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Measurement System 
 

 

20 
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Wafer mapping 

‣ Each point on the wafer 

analysed in turn 

 

‣ Pulse height distribution 

produced and fitted 

 

‣ CCD calculated using system 

gain 

 

‣ Wafer map produced and 

viewed through GUI 

 

‣ Allows for material 

choice before cutting of 

detector area 
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Pulse Height Distributions 

← Polycrystalline diamond 

Single crystal diamond → 
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Field Strength in single crystal diamond 
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“Pumping” in single crystal diamond 



Instrumentation Seminar, BNL 2014                                                    mfisherlevine@bnl.gov .  25 

Ionisation potential and density 

← From theory 

← From experiment→ 
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Electric Field Strength 

 

90 V 



Instrumentation Seminar, BNL 2014                                                    mfisherlevine@bnl.gov .  27 

Polycrystalline Field Strength 
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Field wrt pump state 
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“Pumping” effect 
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Dependence of pump rate on E-field 
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‣ Thickness of diamond wafer 

measured with a digital micrometer 

 

Wafer mapping 

 

 

 

 

 

 

 

 

 

 

‣ Diamond quality (CCD) measured 

with wafer measurement system 
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Radial CCD and Thickness 
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Radial CCD dependence 

 

 

 

 

 

 

 

 

 

 

Correlation between wafer thickness and CCD using radially averaged 

values 
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Conclusion 

‣ A fully automated system was produced to allow for full wafer 

measurement inc. pumping, electric field sweeps etc. 
 

‣ Interesting results produced with minimal effort 

‣ Allows for routine profiling of diamond material before it is sold 

 

‣ System results well received by customers/end-users 

‣ DDL was sending out pulse height distributions on their datasheets and received 

very positive feedback on giving out this information (despite charging for it!) 

 

‣ Many prior science results confirmed with much improved precision 

‣ Definite radial distribution of diamond quality shown 

‣ However, with significant departures from a perfect distribution 

‣ Quality can be probabilistically improved by taking material from central regions, 

but to get the best material the only way is to test before cutting 

 

34 
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Amplifier design 
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Amplifiers for Diamond Spectroscopy 

‣ Creation of an amplifier for use with scCVD diamond 

‣ Diamond is low capacitance and has fast signal collection 

‣ We can use it for fast spectroscopy (potentially at 100s of MHz!) 

‣ Plus it can handle the dose… 

‣ Amplifiers need to be customised to capitalise on diamond’s properties 

 

‣ Preamplifier needs to be high-bandwidth 

 

‣ Need custom shapers for fast baseline restoration 

 

‣ Need high-frequency, high-voltage bias tee 

‣ Full charge collection @ 1V/μm (after damage / in poly) 

‣ 500μm thick diamond → need 500V bias tee 

‣ Amplifier performance modelled in SPICE 

‣ Followed by an iterative design process 
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Traditional circuit topology 
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Single Pole CR-RC Shaping 
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Differentiating - high / low rate configurations 

“Low” rate 

‣ High value Rfb 

 

‣ Preamplifier has slow return to 

baseline 
 

‣ Differentiator gives a unipolar 

output pulse 
 

‣ Shaped output returns to 

baseline much faster than 

preamplifier 
‣ High instantaneous rates possible 

‣ High sustained rates not possible 

 

High rate 

‣ Low value Rfb 

 

‣ Preamplifier has fast return to 

baseline 
 

‣ Differentiator gives a bipolar 

output pulse 
 

‣ Shaped output returns to 

baseline with preamplifier 
 

‣ Lower instantaneous count rate 

‣ Much improved sustained count rate 
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Signal amplitude w.r.t Rise/Fall ratio 
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Preamplifier Differential 
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Circuit topology 

 

•  Adaptation from a previous design 
[1] which achieved 139 e- RMS (inc. 

shaping) 

•  20ns shaping & 25μs tail pulse 

•  Adapted to work with modern 

transistors 

•  HEMT transistor at input 

• > ± 1kV HF bias tee 

 

[1]Adaptation of the preamplifier circuit in G. Bertuccio and A. Pullia; An HEMT Input Charge Preamplifier for 

Nanoseconds Signal Processing Time; IEEE Trans. Nucl. Sci. Vol. 42, No. 2, April (1995) 66. 
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SPICE Simulation 
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Preamplifier performance 
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Preamplifier performance 
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Preamplifier performance 
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Preamplifier performance 
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Gain measurement 
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Preamplifier performance comparison 

Preamp output Test In 

HV In 

S
h
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u
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u
t 
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Low rate (unipolar) MIP Response 
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High rate (bipolar) MIP Response 
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Timing a bipolar output 
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Shaper timing performance 
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Combined Amplifier Gain vs Noise 
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Total system gain 
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Total system linearity 
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Comparison with commercial products 

‣ Whilst some properties are matched by commercial solutions, not all can be 

found in one package 

‣ Comparable ENC to leading commercial amplifiers 

‣ Fast leading edge response 

‣ Narrow pulse widths 

‣ Very high gain 
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Conclusion 

‣ Synthetic diamonds can be used for radiation detection 

‣ Many advantages over silicon and other materials 

 

‣ An automated system was built to measure diamond quality 
 

‣ A fast charge sensitive and shaping amplifier was built using discrete 

components 

‣ 2.1ns rise and 3.75ns FWHM signal times achieved 

 

‣ High gain and good noise performance was achieved with fast pulse 

shaping 

‣ 147mV/fC and 293e- RMS 

 

‣ Combines many commercially available specifications into one 

device 
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Future Work at BNL 
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PImMS – A time-stamping pixel detector 
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Fast Imaging with PImMS 

‣ Pixel Imaging Mass Spectrometry 

(PImMS) 

‣ INMAPS CMOS sensor 

‣ 324 × 324 pixel array 

‣ 70μm × 70μm pixels 

‣ 80MHz clock 

‣ →12.5ns time resolution 

‣ 12 bit timestamp register 

‣ 50μs experimental window at full speed 

‣ Multi-hit capability 

‣ 4 timecodes per pixel 



Instrumentation Seminar, BNL 2014                                                    mfisherlevine@bnl.gov .  62 

Fast Imaging with Timepix 

‣ Timepix sensor bump-bonded to 

silicon pixel sensor 

‣ 256 × 256 pixel array 

‣ 55μm × 55μm pixels 

‣ 100MHz clock 

‣ →10ns time resolution 

‣ ~14 bit timestamp register 

‣ 118μs experimental window at full 

speed 

‣ No multi-hit capability 

‣ Use it once and it won’t record again 
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Synergy with LSST & NSLS-II 

‣ Using LSST data analysis 

software (DMstack) for 

analysis of mass spec data 

 

‣ Similar requirements of cluster 

finding etc 

 

 

 

 

‣ Time resoloved x-ray imaging 

for NSLS-II 

 

‣ 10ns is orders of magnitude better 

than is currently available! 

 



Instrumentation Seminar, BNL 2014                                                    mfisherlevine@bnl.gov .  64 

From Bristol & DDL, many thanks to: 
 

Jaap Velthuis 

Dave Cussans 

Kevin Oliver 

RD42 Collaboration 

Steve Nash 

Scott Kolya 

Magnus Loutit 

 

and many others for all their help and support with this work 

and to 

 

Andrei Nomerotski & Brookhaven Lab 

 

for my new job! 
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Thank you for listening! 

Any questions? 


